바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Vol.44 No.1

; Seong-Ki KIM(National Institute of Ecology) ; (National Institute of Ecology) ; Jung-Do YOON(National Institute of Ecology) pp.1-7 https://doi.org/10.1186/s41610-019-0145-0
초록보기
Abstract

Background: Fish body size is a major determinant of freshwater trophic interactions, yet only a few studies have explored the relationship between the fish body size and trophic interactions in river upstream. In this study, we investigated the relationship between the body size and trophic position (TP) of Coreoperca kawamebari (Temminck & Schlegel, 1843) in an upstream of the Geum River. Results: A stable isotope analysis (based on δ15N) was used to determine the TP based on the body size of C. kawamebari. The regression analysis (n = 33, f = 63.840, r2 = 0.68) clearly showed the relationship between the body length and TP of C. kawamebari. The TP of C. kawamebari was clearly divided by body size into the following classes: individuals of size < 10 cm that feed on insects and individuals of size > 10 cm feed on juvenile fish. This selective feeding is an evolutionarily selective tendency to maximize energy intake per unit time. Furthermore, the diet shift of C. kawamebari was led by different spatial distributions. The littoral zone was occupied by individuals of size < 10 cm, and those of size > 10 cm were mainly in the central zone. The littoral zone can be assumed to be enriched with food items such as ephemeropterans and dipterans. Conclusion: The TP of C. kawamebari, as a carnivorous predator, will have a strong influence on biotic interactions in the upstream area of the Geum River, which can lead to food web implication.

Mehari Alebachew Tesfaye(Central Ethiopia Ethiopian Environment and Forest) ; Oliver Gardi(Universitat Bern) ; Tesfaye Bekele Anbessa(EEFRI) ; Jűrgen Blaser(EEFRI) pp.8-25 https://doi.org/10.1186/s41610-019-0146-z
초록보기
Abstract

Background: Species of the genera Eucalyptus, Cupressus, and Pinus are the most widely planted tree species in the country in general and in Chilimo dry Afromontane forest in particular. Eucalyptus covers 90% of the total planted forest area in the country. However, only limited information exists in the country regarding aboveground biomass (AGB), belowground biomass (BGB), growth, and yield. This study was conducted to assess the variables on 25 and 30 years of age for three planted species: Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Chilimo plantation forest, in the Central Highlands of Ethiopia. A two-times inventory was conducted in 2012 and 2017. A total of nine square sampled plots of 400m2 each, three plots under Cupressus lusitanica, 3 Eucalyptus saligna, and 3 Pinus patula were used for data collection. Data on height, diameter, soil, and tree stumps were collected. Percent C, % N, and bulk density was performed following chemical procedure. Results: The aboveground biomass ranged from 125.76 to 228.67 t C ha−1 and the basal area and number of stems from 3.76 to 25.50m2 ha−1 and 483 to 1175 N ha−1, respectively. The mean annual basal area and volume increment were between 0.97 and 1.20 m2 ha−1 year−1 and 10.79 and 16.22m3 ha−1 year−1. Both carbon and nitrogen stock of the planted forest was non-significant among the tree species. Conclusion: The aboveground biomass, growth, and yield significantly varied among the species. Cupressus lusitanica had the highest aboveground biomass, volume, and basal area, while Eucalyptus saligna had the lowest value .To a depth of 1 m, total carbon stored ranged from 130.13 to 234.26 t C ha−1. The total annual carbon sequestration potential was 12,575.18 t CO2 eq. Eucalyptus has the highest carbon stock density and growth rate than other species.

; Sampat Ghosh ; (Andong National University) pp.26-32 https://doi.org/10.1186/s41610-020-0149-9
초록보기
Abstract

Background: Pollen is an important source of protein and lipids for many animals including honey bees. In order to understand the foraging behaviour of honey bee colonies and preference among the available floral resources, pollen collections from three experimental healthy colonies of honey bees were analysed in the month of June. Results: The amount of pollen collections were related to the colony’s need which was indicated by the number of larval and adult bees present in the hive. Interesting was the sequence of pollen collection from different floral sources. All honey bee colonies collected pollens from Trifolium repens first, then Erigeron annus and the third choice was Coreopsis drummondii and Oenothera biennis flowers. Total protein content of Trifolium pollen was the highest (20.0 g/100 g DM), and the others were in the range of 8.9–11.4 g/100 g DM. Conclusion: The results indicated that the first criteria for honey bee foraging preference of pollens would be the nutritional contents of protein and the resource availability of the lesser nutritious floral sources. This information can help pollinator protection programmes of habitat manipulation using flowering plants for nectar and pollen sources.

Daesik Park(Kangwon National University) ; (Kangwon National University) ; Il-Kook Park(Kangwon National University) ; (University of Wuerzburg) ; Jonathan J. Fong(Lingnan University) ; Yong-Pu Zhang(Wenzhou University) ; Shu-Ran Li(Wenzhou University) ; Hidetoshi Ota(University of Hyogo) ; pp.33-40 https://doi.org/10.1186/s41610-020-0147-y
초록보기
Abstract

Background: Understanding the geographical distribution of a species is a key component of studying its ecology, evolution, and conservation. Although Schlegel’s Japanese gecko (Gekko japonicus) is widely distributed in Northeast Asia, its distribution has not been studied in detail. We predicted the present and future distribution of G. japonicus across China, Japan, and Korea based on 19 climatic and 5 environmental variables using the maximum entropy (MaxEnt) species distribution model. Results: Present time major suitable habitats for G. japonicus, having greater than 0.55 probability of presence (threshold based on the average predicted probability of the presence records), are located at coastal and inland cities of China; western, southern, and northern coasts of Kyushu and Honshu in Japan; and southern coastal cities of Korea. Japan contained 69.3% of the suitable habitats, followed by China (27.1%) and Korea (4.2%). Temperature seasonality (66.5% of permutation importance) was the most important predictor of the distribution. Future distributions according to two climate change scenarios predicted that by 2070, and overall suitable habitats would decrease compared to the present habitats by 18.4% (scenario RCP 4.5) and 10.4% (scenario RCP 8.5). In contrast to these overall trends, range expansions are expected in inland areas of China and southern parts of Korea. Conclusions: Suitable habitats predicted for G. japonicus are currently located in coastal cities of Japan, China, and Korea, as well as in isolated patches of inland China. Due to climate change, suitable habitats are expected to shrink along coastlines, particularly at the coastal-edge of climate change zones. Overall, our results provide essential distribution range information for future ecological studies of G. japonicus across its distribution range.

Hong-Shik Oh(Department of Science Education, Jeju National University, Jeju, Korea) ; Maniram Banjade(Jeju National University) ; Young-Hun Jeong(Jeju National University) ; Sang-Hyun Han(Korea National Park Service Species Restoration Te) ; Yoo-Kyung Kim(Jeju National University) ; Byung-Soo Kim(Shinseong Girls Middle School) pp.41-44 https://doi.org/10.1186/s41610-020-0150-3
초록보기
Abstract

The Chinese many-toothed snake (Sibynophis chinensis) is an endangered species in South Korea. To determine its reproductive activity, here we captured a gravid S. chinensis from Mulyeongari Oreum Wetland Conservation Area, Jeju Island, on May 27, 2018, and reared it at Animal Taxonomy and Morphology Laboratory, Jeju National University, South Korea. The snake oviposited a clutch of six eggs between June 12 and 20, 2018, with an average size of 24.86 ± 1.36 mm in length and 9.86 ± 0.49mm in width, which were artificially incubated at a constant temperature of 27 °C. After incubating for 34–41 days, five of these six eggs successfully hatched. Average snoutvent length (SVL), tail length (TL), and body weight (BW) of hatchlings were 136.5 ± 5.17 mm, 47.76 ± 2.80 mm, and 1.66 ± 0.12 g, respectively. This study observed the reproductive activity of S. chinensis and characterized its eggs and hatchlings for the first time, providing valuable information for the long-term conservation plan of S. chinensis in South Korea.

; Sam Cho(Konkuk University) ; Chul-Hwan Kim(Konkuk University) ; Min-Ji Kim(Konkuk University) pp.45-53 https://doi.org/10.1186/s41610-020-0148-x
초록보기
Abstract

Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2–4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

; Han Ju Kim(Pukyong National University) ; Han Ju Kim(Seoul National University of Science and Technolog) pp.54-61 https://doi.org/10.1186/s41610-020-00153-y
초록보기
Abstract

Background: Most fish undergo prey switch from juvenile to adult. It is thought that slightly different feeding habits occur among adult fishes due to growth, spawning, habitat change, and so on. Therefore, the diet of the John Dory Zeus faber (≥ 24 cm TL) was studied in the coastal waters of Korea by analysis of stomach contents, with comparison by season and size class of diet composition and prey diversity. Monthly samples were taken from February 2017 to January 2018. Results: The results showed that the John Dory was a piscivorous predator, and pisces had occupied 82.3% of IRI%. Trichiurus lepturus and Trachurus japonicus were important preys in all size classes and seasons. Diet composition differed among the size classes and seasons (Chi-square test, P < 0.05). As body size of Z. faber increased, the occurrence of benthic fish (Glyptocephalus stelleri) tended to increase. The seasonal prey composition also changed depending on the abundant species of each season. Conclusions: Z. faber is a piscivorous predator. The consumption habits of Z. faber appear to different results by their size and seasons. This study suggests that Z. faber could be considered an opportunistic predator.

Journal of Ecology and Environment