바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Effects of water levels and soil nutrients on the growth of Iris laevigata seedlings

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2018, v.42 no.1, pp.43-49
https://doi.org/10.1186/s41610-018-0065-4



  • Downloaded
  • Viewed

Abstract

Iris laevigata is geographically restricted and legally protected in Korea. In this study, a mesocosm study was conducted to examine the effects of environmental conditions such as water levels and soil nutrient conditions on the growth and survival of I. laevigata seedlings. Complete submergence lowered the total number of leaves, biomass, and survival rates. A rise in soil nutrients increased overall seedling growth and increased tiller numbers via the promotion of asexual reproduction. Also, we found that the lowest measured values of seedlings are associated with the most stressful condition due to the interaction of low soil nutrients and high water levels. I.laevigata seedlings, however, are distributed in low-nutrient habitats such as floating mat, even though they do not grow well under these conditions. This study suggests that I. laevigata does not prefer low-nutrient condition but choose another benefit such as low competition. Also, the water level must be lower than the seedling height for effective growth and management of I. laevigata.

keywords
Endangered species, Fundamental niche, Seedling establishment, Soil nutrients, Water depth

Reference

1.

Casanova, M. T., & Brock, M. A. (2000). How do depth, duration, and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147(2), 237-250.

2.

Chapin, F. S., Vitousek, P. M., & Van Cleve, K. (1986). The nature of nutrient limitation in plant communities. The American Naturalist, 127(1), 48-58.

3.

Clarkson, D. T. (1967). Phosphorus supply and growth rate in species of Agrostis L. Journal of Ecology, 55, 111-118.

4.

Colmer, T. D., & Pedersen, O. (2008). Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve <TEX>$CO_2$</TEX> and <TEX>$O_2$</TEX> exchange. New Phytologist, 177(4), 918-926.

5.

Drury, W. H. (1974). Rare species. Biological Conservation, 6(3), 162-169.

6.

Engin, A., Kandemir, N., Senel, G., & Ozkan, M. (1998). An autecological study on Iris pseudacorus L. (Iridaceae). Turkish Journal of Botany, 22(5), 335-340.

7.

Fraser, L. H., & Karnezis, J. P. (2005). A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands, 25(3), 520-530.

8.

Gaston, K. J., & Kunin, W. E. (1997). Rare-common differences: an overview. In W. E. Kunin & K. Gaston (Eds.), The biology of rarity (pp. 12-29). Dordrecht: Springer.

9.

Grime, J. P. (1979). Plant strategies and vegetation processes. Chichester: Wiley.

10.

Grime, J. P., & Hunt, R. (1975). Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 63, 393-422.

11.

Hong, M. G., Son, C. Y., & Kim, J. G. (2014). Effects of interspecific competition on the growth and competitiveness of five emergent macrophytes in a constructed lentic wetland. Paddy Water Environment, 12(1), S193-S202.

12.

Jacobs, J., Graves, M., & Mangold, J. (2010). Biology, ecology and management of yellowflag iris (Iris pseudacorus L.). Montana: United States Department of Agriculture, Natural Resources Conservation Service.

13.

Kim, D. H., Kim, H. T., & Kim, J. G. (2013). Effects of water level and soil type on the survival and growth of Persicaria thunbergii during early growth stages. Ecological Engineering, 61, 90-93.

14.

Kim, H. T., Lee, G. M., & Kim, J. G. (2013). The ecological characteristics and conservation counterplan of Menyanthes trifoliata habitat in floating mat in Korean east coastal lagoon, Sunyoodam. Journal of Wetlands Research, 15(1), 25-34 (in Korean).

15.

Kim, S. H., Nam, J. M., & Kim, J. G. (2017). Establishment strategy of a rare wetland species Sparganium erectum in Korea. Journal of Ecology and Environment, 41(1), 27.

16.

Korea Forest Service and Korea National Arboretum. (2008). Rare plants data book in Korea. Pocheon: Geobook.

17.

Kwon, G. J., Lee, B. A., Nam, J. M., & Kim, J. G. (2007). The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea: II. Soil environments. Ecological Research, 22(1), 75-86.

18.

Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14(2), 89-136.

19.

Lee, B. E., & Kim, J. G. (2014). Habitat environmental characteristics of vulnerable plant species Iris laevigata and I. setosa in Korean east coastal lagoons. Incheon: The 4th International Conference of Urban Biodiversity and Design.

20.

Lee, G. M. (2012). Effects of habitat substrates and companion plants on the growth of Menyanthes trifoliate L. in Korean: Seoul National University, Master's Thesis.

21.

Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment-an integrative model. Wetlands, 18(4), 634-645.

22.

Ministry of Environment. (2012). Law of wild animal and plants protection. Seoul: Ministry of Environment.

23.

Nash, H., & Stroupe, S. (2003). Complete guide to water garden plants. New York: Sterling Publishing Company.

24.

National Institute of Biological Resources. (2012). Flora of hot-spot areas in Korea (I). Incheon: National Institute of Biological Resources.

25.

Nicol, J. M., & Ganf, G. G. (2000). Water regimes, seedling recruitment and establishment in three wetland plant species. Marine and Freshwater Research, 51(4), 305-309.

26.

Orians, G. H., & Soule, M. E. (2001). Whither conservation biology research? Conservation Biology, 15(4), 1187-1188.

27.

Pratt, R. B., Jacobsen, A. L., Mohla, R., Ewers, F. W., & Davis, S. D. (2008). Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology, 96(6), 1252-1265.

28.

Rodionenko, G. I. (1987). The genus Iris L.: questions of morphology, biology, evolution and systematics. London: British Iris Society.

29.

Sauter, M. (2013). Root responses to flooding. Current Opinion in Plant Biology, 16(3), 282-286.

30.

Seabloom, E. W., van der Valk, A. G., & Moloney, K. A. (1998). The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines. Plant Ecology, 138(2), 203-216.

31.

Shin, C. J., Nam, J. M., & Kim, J. G. (2015). Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte. Landscape and Ecological Engineering, 11(1), 111-117.

32.

Striker, G. G. (2012). Flooding stress on plants: anatomical, morphological and physiological responses. In J. K. Mworia (Ed.), Botany (pp. 1-28) InTech.

33.

Sun, M. Z., Li, M. R., Shi, F. X., Li, L., Liu, Y., Li, L. F., & Xiao, H. X. (2012). Genomic and EST-derived microsatellite markers for Iris laevigata (Iridaceae) and other congeneric species. American Journal of Botany, 99(7), e286-e288.

34.

Yabuya, T. (1987). High-performance liquid chromatographic analysis of anthocyanins in induced amphidiploids of Iris laevigata Fisch.<TEX>$\times$</TEX> I. ensata Thunb. Euphytica, 36(2), 381-387.

35.

Yabuya, T. (1991). Chromosome associations and crossability with Iris ensata Thunb. in induced amphidiploids of I. laevigata Fisch.<TEX>$\times$</TEX> I. ensata. Euphytica, 55(1), 85-90.

Journal of Ecology and Environment