바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

A study of low-temperature and mountain epilithic diatom community in mountain stream at the Han River system, Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2017, v.41 no.8, pp.213-222
https://doi.org/10.1186/s41610-017-0048-x


  • Downloaded
  • Viewed

Abstract

Background: This study was conducted to assess the physicochemical water quality and the altitudinal distribution of low-temperature and mountain epilithic diatom (LTMD) community in Buk and Hangae streams that are located in Seorak Mountain with the height of 1708 m in Korea. And the community characteristics of LTMD found in the Buk and Hangae streams were compared to that of LTMD from the Han River system. Results: The physicochemical water qualities of Buk and Hangae streams were determined to be very clean. As a result of analyzing the community composition, 135 taxa of epilithic diatoms were determined, and 22 taxa appeared including Hannaea arcus var. subarcus which are known to have low-temperature and mountain ecological characteristics in the literatures. The relative frequencies of LTMD were 37.0~0.9% range from the upper to lower regions. Although Diatoma tenuis, Eunotia minor, and Gomphonema affine are known to be ubiquitous in streams and lakes, in this research, the three taxa were added into low-temperature and mountain epilithic diatom, since D. tenuis and E. minor appeared only in altitudes above 600 m, and G. affine had the highest relative frequency during spring and fall in altitudes above 700 m, when water temperature was around 10 °C. Conclusions: Among the 24 taxa of low-temperature and mountain epilithic diatom (LTMD) (including the 3 taxa added in this study), 14 taxa (Diatoma hyemalis, D. mesodon, D. tenuis, Hannaea arcus, H. arcus var. subarcus, Ulnaria inaequalis, Eunotia bilunaris, E. implicata, E. minor, E. muscicola, E. silvahercynia, E. septena, Delicata delicatula, and Gomphonema affine) represented the characteristics of LTMD very well; they grow best in water temperatures below 15 °C in Buk and Hangae streams and Han River system.

keywords
Altitudinal distribution, Buk and Hangae streams, Epilithic diatom, Han River system, Low-temperature and mountain

Reference

1.

Allan, J. D. (1995). Stream ecology-structure and function of running waters. London: Chapman and Hall.

2.

Antoniades, D. M., & Douglas, M. S. V. (2002). Characterization high arctic stream diatom assemblages from cornwallis island, Nunavut, Canada. Canadian Journal of Botany, 80, 50–58.

3.

Atazadeh, I., Sharifi, M., & Kelly, M. G. (2007). Evaluation of the trophic diatom index for assessing water quality in river Gharasou, western Iran. Hydrobiologia, 589, 165–173.

4.

Carpenter, K. D., & Waite, I. R. (2000). Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette basin, Oregon. Environmental Monitoring and Assessment, 64, 247–257.

5.

Chapin, F. S. III & Körner, C. (1995). Patterns, causes, changes and consequences of biodiversity in arctic and alpine ecosystems. In: Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences (Ed. by F.S. Chapin III and C. Körner), pp. 313–320. Springer–Verlag, Berlin.

6.

Chung, J. (1993). Illustration of the freshwater algae of Korea. Seoul: Academy Publishing Company.

7.

Chung, N. I., Park, B. K., & Kim, K. H. (2011). Potential effect of increased water temperature on fish habitats in Han-river watershed. Journal of Korean Society on Water Environment, 27, 314–321.

8.

Craig, D. A. (1987). Some of what you should know about water. Journal of North American Benthological Society, 4, 178–182.

9.

Descy, J. P. (1979). New approach to water quality estimation using diatoms. Nova Hedwigia, 64, 305–323.

10.

Falasco, E., Ector, L., Ciaccio, E., Hoffmann, L., & Bona, F. (2012). Alpine freshwater ecosystems in a protected area: A source of diatom diversity. Hydrobiologia, 695, 233–251.

11.

Ginn, B. K., Cumming, B. F., & Smol, J. P. (2007). Diatoms-based environmental inferences and model comparisons from 494 northeastern north American lakes. Journal of Phycology, 43, 647–661.

12.

Greenberg, A. E., Clesceri, L. S., & Eaton, A. N. (2000). Standard method for the examination of water and wastewater (21st ed.). Washington, D.C., USA:American Public Health Association.

13.

Joh, G. J., Lee, J. H., Lee, K., & Yoon, S. K. (2010). Algal flora of Korea, Volume 3Number 2, Freshwater Ditoms II (Chrysophyta, Bacillariophyceae, Pennales, Araphidineae, Diaomaceae) (p. 153). Korea: National Institute of Biological Resources.

14.

Kawecka, B., & Robinson, C. T. (2008). Diatom communities of lake/stream networks in the Tatra Mountains, Poland, and the Swiss alps. Oceanological and Hydrobiological Studies, 37, 21–35.

15.

Kelly, M. G., & Whitton, B. A. (1995). The trophic diatom index: A new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 7, 433–444.

16.

Kim, Y. J., Kong, D. S., & Lee, O. M. (2012). The community of cryophilic and mountain periphyton at high altitude streams in the Han-river system. Journal of Environmental Impact Assessment, 21, 143–160.

17.

Kim, Y. J., Shin, K. A., & Lee, O. M. (2009). Water quality assessed by DAIpo and TDI of Bokha stream and Dal stream in south Han-river, Korea. Journal of Environmental Biology, 27, 414–424.

18.

Kownacki, A., Dumnicka, E., Kwandras, J., Galas, J., & Ollik, M. (2006). Benthic communities in relation to environmental factors in small high mountain ponds threatened by air pollutants. Boreal Environment Research, 11, 481–492.

19.

Krammer, K. (2002). Cymbella. In Diatoms of Europe 3(Ed. By H. Lange-berralot), A. R. G. Gantner Verlag K. G., Ruggell.

20.

Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In Süßwasserflora von Mitteleuropa(Ed. By H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer), Vol. 2/1. G. Fischer, Stuttgart and New York.

21.

Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Süßwasserflora von Mitteleuropa(Ed. By H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer), Vol. 2/2. G. Fischer, Stuttgart and New York.

22.

Krammer, K. & Lange-Bertalot, H. (1991). Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula(Lineolatae) und Gomphonema,Gesamtliteraturverzeichnis. In Süßwasserflora von (Ed. By H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer), Vol. 2/4. G. Fischer, Stuttgart and New York.

23.

Lang, P., & Murphy, J. (2012). Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia, 679, 1–17.

24.

Lange-Bertalot, H., Bak, M. & Witkowski, A. (2010). Eunotia and some related genera. In Diatoms of Europe 6(Ed. by H. Lange-Bertalot), A. R. G. Gantner Verlag K. G., Ruggell.

25.

Lauriol, B., Préevost, C., & Lacelle, C. (2006). The distribution of diatom flora in ice caves of the northern Yukon territory, Canada: Relationship to air circulation and freezing. International Journal of Speleology, 35, 83–92.

26.

Lee, J. H., Gotoh, T., & Chung, J. (1992). Diatoms of Yungchun dam reservoir and its tributaries. Kyung pook prefecture, Korea. Diatom, 7, 45–70.

27.

Loeb, S. L., Reuter, J. E. & Goldman, C. R. (1983). Littoral zone production of oligotrophic lakes. In Periphyton of freshwater ecosystems (Ed. by R.G. Wetzel). Junk W. Publishers, The Hague.

28.

Medvedeva, L. A. (2001). Biodiversity of aquatic algal communities in the Sikhote-Alin biosphere reserve (Russia). Cryptogamie Algologie, 22, 65–100.

29.

O’Driscoll, C., Eyto, E., Rodgers, M., O’Connor, M., Asam, Z. Z., & Xiao, L. (2012). Diatom assemblages and their associated environmental factors in upland peat forest rivers. Ecological Indicators, 18, 443–451.

30.

Passy, S. I. (2007). Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany, 86, 171–178.

31.

Potapova, M. (1996). Epilithic algal communities in rivers of the Kolyma mountains, NE Siberia, Russia. Nova Hedwigia, 63, 3–4.

32.

Robinson, C. T., & Kawecka, B. (2005). Benthic diatoms of an alpine stream/lake network in Switzerland. Aquatic Science, 67, 492–506.

33.

Robinson, C. T., Kawecka, B., Füreder, L., & Peter, A. (2010). Biodiversity of flora and fauna in alpine waters. Alpine Waters, 6, 193–223.

34.

Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms. New York, USA:University of Cambridge.

35.

Sánchez-Castillo, P. M., Linares-Cuesta, J. E., & Fernández-Moreno, D. (2008). Changes in epilithic diatom assemblages in a Mediterranean high mountain lake(Laguna de la caldera, sierra Nevada, Spain) after a period of drought. Journal of Limnology, 76, 49–55.

36.

Servant-vildary, S. (1982). Altitudinal zonation of mountainous diatom flora in Bolivia: Application to the study of the quaternary. Acta Geologica Academiae Scientiarum Hungaricae, 25, 179–210.

37.

Son, S. H., Kim, J. Y., Jo, J. J., & Kong, D. S. (2011). Altitudinal distribution aspect of benthic macroinvertebrates in a mountain stream of Seoraksan. Journal of Korean Society on Water Environment, 27, 680–688.

38.

Tornés, E., Leira, M., & Sabater, S. (2012). Is the biological classification of benthic diatom communities concordant with ecotypes? Hydrobiologia, 695, 44–51.

39.

Valvilova, V. V., & Lewis, W. M. J. (1999). Temporal and altitudinal variations in the attached algae of mountain streams in Colorado. Hydrobiologia, 193, 81–93.

40.

Watanabe, T., Asai, K., & Houki, A. (1990). Numerical simulation of organic pollution in flowing waters. Hazardous Waste Containment and Treatment, 4, 251–281.

41.

Watanabe, T., Ohtsuka, T., Tuji, A., & Houki, A. (2005). Picture book and ecology of the freshwater diatoms. Tokyo: Uchida-rokakuho.

Journal of Ecology and Environment