바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Establishment strategy of a rare wetland species Sparganium erectum in Korea

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2017, v.41 no.8, pp.202-212
https://doi.org/10.1186/s41610-017-0045-0



  • Downloaded
  • Viewed

Abstract

Background: To reveal establishment strategy of Sparganium erectum, we tried to find realized niche of adults through field survey and effects of water level on the establishment process through mesocosm experiments. Results: In the field survey, the height and coverage of community living in deeper water were greater than those of community living in shallow water. There was no statistically significant difference (p > 0.05) in the means of water and soil properties between the two communities. In mesocosm experiments, we found no correlation between water levels and germination rates, but S. erectum seedlings have characteristics of post germination seedling buoyancy when S. erectum seeds germinated in inundation conditions. Shoot height, total leaf length, and survival rates of sinking seedlings in shallow water levels at −5, 0, and 5 cm were higher than those in deeper water levels at 10 and 20 cm. Floating seedlings established in water levels of 3 and 6 cm only. The seedlings could live up to 6 weeks in floating state but died if they were unable to establish. Conclusions: The water level around adult S. erectum communities in the field were different from the water level at which S. erectum seedlings can survive in the mesocosm experiments. The findings provided not only understanding of S. erectum habitat characteristics but also evidence to connect historical links between the early seedlings stage and adult habitat conditions. We suggested the logical establishment strategy of S. erectum based on the data.

keywords
Adult niche, Habitat environment, Macrophyte, Regeneration niche, Seedling establishment

Reference

1.

Abbe, T. B., & Montgomery, D. R. (2003). Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology, 51(1), 81–107.

2.

Asaeda, T., Rajapakse, L., & Kanoh, M. (2010). Fine sediment retention as affected by annual shoot collapse: Sparganium erectum as an ecosystem engineer in a Lowland Stream. River Research and Applications, 26(9), 1153–1169.

3.

Baskin, C. C., & Baskin, J. M. (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York: Academic Press.

4.

Boyle, J. (2004). A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology, 31, 125–127.

5.

Byun, C., Kwon, G. J., Lee, D., Wojdak, J. M., & Kim, J. G. (2008). Ecological assessment of plant succession and water quality in abandoned rice fields. Journal of Ecology and Field Biology, 31(3), 213–223.

6.

Choo, Y. H., Nam, J. M., Kim, J. H., & Kim, J. G. (2015). Advantages of amphicarpy of Persicaria thunbergii in the early life history. Aquatic Botany, 121, 33–38.

7.

Clarke, P. J., & Allaway, W. G. (1993). The regeneration niche of the grey mangrove (Avicennia marina): effects of salinity, light and sediment factors on establishment, growth and survival in the field. Oecologia, 93, 548–556.

8.

Clevering, O. A., Van Vierssen, W., & Blom, C. W. P. M. (1995). Growth, photosynthesis and carbohydrate utilization in submerged Scirpus maritimus L. during spring growth. New Phytology, 130(1), 105–116.

9.

Collins, S. L., & Good, R. E. (1987). The seedling regeneration niche: habitat structure of tree seedlings in an oak-pine forest. Oikos, 48(1), 89–98.

10.

Cook, C. D. K. (1962). Sparganium erectum L. (S-Ramosum Hudson, Nom Illeg). Journal of Ecology, 50(1), 247–255.

11.

Cooling, M. P., Ganf, G. G., & Walker, K. F. (2001). Leaf recruitment and elongation: an adaptive response to flooding in Villarsia reniformis. Aquatic Botany, 70(4), 281–294.

12.

Coops, H., van den Brink, F. W. B., & van der Velde, G. (1996). Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquatic Botany, 54(1), 11–24.

13.

Coops, H., & van der Velde, G. (1995). Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshwater Biology, 34, 13–20. doi:10.1111/j.1365-2427.1995.tb00418.x.

14.

Cornell, H. V., & Lawton, J. H. (1992). Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. Journal of Animal Ecology, 61, 1–12.

15.

DeKlerk, P., Janssen, C. R., & Joosten, J. H. J. (1997). Patterns and processes in natural wetland vegetation in the Dutch fluvial area: A palaeoecological study. Acta Botanica Neerlandica, 46(2), 147–159.

16.

Eriksson, O. (1989). Seedling dynamics and life histories in clonal plants. Oikos, 55, 231–238.

17.

Friedman, J. M., Osterkamp, W., & Lewis Jr., W. M. (1996). The role of vegetation and bed-level fluctuations in the process of channel narrowing. Geomorphology, 14(4), 341–351.

18.

Grace, J. B. (1987). The impact of preemption on the zonation of two Typha species along lakeshores. Ecological Monographs, 57(4), 283–303.

19.

Grime, P. J. (2006). Plant Strategies, Vegetation Processes, and Ecosystem Properties (2nd ed.). New York: Wiley.

20.

Grubb, P. J. (1977). The maintenance of species-richness in plant communities:the importance of the regeneration niche. Biological Reviews, 52(1), 107–145.

21.

Gurnell, A. M. (2007). Analogies between mineral sediment and vegetative particle dynamics in fluvial systems. Geomorphology, 89(1), 9–22.

22.

Gurnell, A., Van Oosterhout, M., De Vlieger, B., & Goodson, J. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680.

23.

Haslam, S. M. (1970). The perpormance of Phragmites communis Trin. in Relation to Water-supply. Annals of Botany, 34, 867–877.

24.

Hong, M. G., & Kim, J. G. (2014). Role and effects of winter buds and rhizome morphology on the survival and growth of common reed (Phragmites australis). Paddy and Water Environment, 12(Suppl 1), S203–S209. doi:10.1007/s10333-014-0445-z.

25.

Hong, M. G., Nam, J. M., & Kim, J. G. (2012). Occupational strategy of runner reed (Phragmites japonica Steud.): change of growth patterns with developmental aging. Aquatic Botany, 97(1), 30–34.

26.

Jeon, S. H., Kim, H., Nam, J. M., & Kim, J. G. (2013). Habitat characteristics of sweet flag (Acorus calamus) and their relationships with sweet flag biomass. Landscape and Ecological Engineering, 9(1), 67–75.

27.

Jeong, T. S., & Kim, J. G. (2017). Parnassia palustris population differences in three Korean habitat types. Landscape and Ecological Engineering, 13(1), 93–105. doi:10.1007/s11355-016-0305-7.

28.

Kamphake, L. J., Hannah, S. A., & Cohen, J. M. (1967). Automated analysis for nitrate by hydrazine reduction. Water Research, 1, 205–216.

29.

Kaneko, K., & Jinguji, H. (2012). Effects of environmental factors on Sparganium emersum and Sparganium erectum colonization in two drainage ditches with different maintenance. Agricultural Sciences, 3, 538–544.

30.

Kang, H. C., & Joo, Y. K. (1999). The structural characteristics in natural wetlands and fitted depth zones of Phramites japonica (in Korean). Journal of the Korean Institute of Traditional Landscape Architecture, 17(4), 191–200.

31.

Kankaala, P., Ojala, A., Tulonen, T., Haapamäki, J., & Arvola, L. (2000). Response of littoral vegetation on climate warming in the boreal zone; an experimental simulation. Aquatic Ecology, 34(4), 433–444.

32.

Kim, D. H., Choi, H., & Kim, J. G. (2012). Occupational strategy of Persicaria thunbergii in riparian area: rapid recovery after harsh flooding disturbance. Journal of Plant Biology, 55(3), 226–232.

33.

Kim, S., & Kim, J. G. (2009). Humulus japonicus accelerates the decomposition of Miscanthus sacchariflorus and Phragmites australis in a floodplain. Journal of Plant Biology, 52(5), 466–474.

34.

Kim, S. H., & Kim, J. G. (2015). Analysis of environmental characteristics for habitat conservation and restoration of near threatned Sparganium japonicum. Journal of the Korean Society of Environmental Restoration Technology, 18, 37–51.

35.

Kim, D. H., Kim, H. T., & Kim, J. G. (2013). Effects of water depth and soil type on the survival and growth of Persicaria thunbergii during early growth stages. Ecological Engineering, 61, 90–93.

36.

Kim, J. G., Park, J. H., Choi, B. J., Sim, J. H., Kwon, G. J., Lee, B. A., Lee, Y. W., & Ju, E.J. (2004). Method in Ecology. Seoul: Bomoondang (in Korean).

37.

Kwon, G. J., Lee, B. A., Nam, J. M., & Kim, J. G. (2006). The optimal environmental ranges for wetland plants: 1. Zizania Latifolia and Typha angustigolia (in Korean). Journal of the Korean Society of Environmental Restoration Technology, 9, 72–88.

38.

Kwon, G. J., Lee, B. A., Nam, J. M., & Kim, J. G. (2007). The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea: II. Soil environments. Ecological Research, 22, 75–86.

39.

Lee, B. A., Kwon, G. J., & Kim, J. G. (2007). The optimal environmental ranges for wetland plants:II. Scirpus tabernaemontani and Typha latifolia. Journal of Ecology and Field Biology, 30(2), 151–159.

40.

Liffen, T., Gurnell, A. M., O’Hare, M. T., Pollen-Bankhead, N., & Simon, A. (2011). Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: Implications for fine sediment retention in low energy rivers. Ecological Engineering, 37(11), 1925–1931.

41.

Mauchamp, A., Blanch, S., & Grillas, P. (2001). Effects of submergence on the growth of Phragmites australis seedlings. Aquatic Botany, 69(2–4), 147–164.

42.

Mueller-Dombois, D., & Ellenberg, H. (2003). Aims and Methods of Vegetation of Ecology. New York: Blackburn Press.

43.

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chemica Acta, 27, 31–36.

44.

National Institute of Biological Resources. (2012). Red Data Book of Endangered Vascular Plants in Korea. Ministry of Environment (in Korean).

45.

National Museum of Nature and Science. (2017). Global red list of Japanese threatened plants. https://www.kahaku.go.jp/english/research/db/botany/redlist/list/list_05_254_1.html. Accessed 29 July 2017.

46.

Nicol, J. M., & Ganf, G. G. (2000). Water regimes, seedling recruitment and establishment in three wetland plant species. Marine and Freshwater Research, 51(4), 305–309.

47.

O’Hare, J. M., O’Hare, M. T., Gurnell, A. M., Scarlett, P. M., Liffen, T., & McDonald, C.(2012). Influence of an ecosystem engineer, the emergent macrophyte Sparganium erectum, on seed trapping in lowland rivers and consequences for landform colonisation. Freshwater Biology, 57(1), 104–115.

48.

Pollen-Bankhead, N., Thomas, R. E., Gurnell, A. M., Liffen, T., Simon, A., & O’Hare, M.T. (2011). Quantifying the potential for flow to remove the emergent aquatic macrophyte Sparganium erectum from the margins of low-energy rivers. Ecological Engineering, 37(11), 1779–1788.

49.

Pollux, B. J. A., Verbruggen, E., Van Groenendael, J. M., & Ouborg, N. J. (2009). Intraspecific variation of seed floating ability in Sparganium emersum suggests a bimodal dispersal strategy. Aquatic Botany, 90(2), 199–203.

50.

Pons, T. L. (1982). Factors affecting weed seed germination and seedling growth in lowland rice in Indonesia. Weed Research, 22, 155–161.

51.

Prentis, P. J., Meyers, N. M., & Mather, P. B. (2006). Significance of postgermination buoyancy in Helmholtzia glaberrima and Philydrum lanuginosum (Philydraceae). Australian Journal of Botany, 54(1), 11–16.

52.

Rea, N. (1996). Water depths and Phragmites: decline from lack of regeneration or dieback from shoot death. Folia Geobotanica, 31(1), 85–90.

53.

Riis, T., Sand-Jensen, K., & Vestergaard, O. (2000). Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany, 66(4), 255–272.

54.

Sand-Jensen, K., Pedersen, M. F., & Nielsen, S. L. (1992). Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshwater Biology, 27(2), 283–293

55.

Seabloom, E. W., Moloney, K. A., & van der Valk, A. G. (2001). Constraints on the establishment of plants along a fluctuating water-depth gradient. Ecology, 82(8), 2216–2232.

56.

Seabloom, E. W., van der Valk, A. G., & Moloney, K. A. (1998). The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines. Plant Ecology, 138(2), 203–216.

57.

Shin, C. J., & Kim, J. G. (2013). Ecotypic differentiation in seed and seedling morphology and physiology among Cicuta virosa populations. Aquatic Botany, 111, 74–80.

58.

Shin, C. J., Nam, J. M., & Kim, J. G. (2013). Comparison of environmental characteristics at Cicuta virosa habitats, an endangered species in South Korea. Journal of Ecology and Environment, 36, 19–29.

59.

Shipley, B., Keddy, P., Moore, D., & Lemky, K. (1989). Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology, 77, 1093–1110.

60.

Shreve, F. (1922). Conditions indirectly affecting vertical distribution on dessert Mountains. Ecology, 3(4), 269–274.

61.

Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography, 14, 799–801.

62.

Spence, D. H. N. (1982). The zonation of plants in freshwater lakes. In A. Macfadyen & E. D. Ford (Eds.), Advances in Ecological Research (pp. 37–125). New York: Academic.

63.

Takahashi, H., Sato, T., & Volotovsky, K. A. (2000). A quantitative comparison of distribution patterns in four common sparganium species in Yakutia, Eastern Siberia. Acta Phytotaxonomica et Geobotanica, 51(2), 155–168.

64.

Tilman, D. (1997). Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 78(1), 81–92.

65.

van der Valk, A. (1981). Succession in wetlands: a Gleasonian approach. Ecology, 62(3), 688–696.

66.

Waters, I., & Shay, J. M. (1992). Effect of water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany, 70, 349–351.

67.

Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological Monographs, 30(3), 279–338.

68.

Whitton, B. A., Boulton, P. N. G., Clegg, E. M., Gemmell, J. J., Graham, G. G., Gustar, R., & Moorhouse, T. P. (1998). Long-term changes in macrophytes of British rivers: 1. River wear. The Science of the Total Environment, 210(1–6), 411–426.

69.

Yang, Y. Y., & Kim, J. G. (2016). The optimal balance between sexual and asexual reproduction in variable environments: A systematic review. Journal of Ecology and Environment, 40, 12. doi:10.1186/s41610-016-0013-0.

70.

Yang, Y. Y., & Kim, J. G. (2017). The life history strategy of Penthorum chinense:implication for the restoration of early successional species. Flora, 233, 109–117. doi:10.1016/j.flora.2017.05.017.

Journal of Ecology and Environment