바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Characteristics and distribution of terpenes in South Korean forests

Journal of Ecology and Environment / Journal of Ecology and Environment, (P)2287-8327; (E)2288-1220
2017, v.41 no.5, pp.132-141
https://doi.org/10.1186/s41610-017-0038-z







  • Downloaded
  • Viewed

Abstract

The importance of forests continues to increase throughout the world, and one of the reasons is that a forest is a major place to emit terpenes, which have been reported to be beneficial to human health. In South Korea, forests occupy about 64% of the total land area and consist mainly of pine and oak trees. Since only a limited number of forests have been analyzed to date, a comprehensive understanding of terpenes emitted from regional forests remains in its infancy in Korea. Here, to gain insights into terpenes from regional forests located in South Korea, we review the characteristics of Korean forests and recent studies on major terpenes emitted from regional forests as well as from native trees dominant in South Korea. We also discuss meteorological factors that affect the terpene emissions in Korean forests. In conclusion, 18 types of terpenes were detected in Korean forests and their compositions in different forests are largely dependent on the dominant plant species in the forest. Moreover, terpene emissions in Korean forests are affected by various environmental factors, including temperature, amount and duration of daylight, season, and age of trees. To improve the understanding of the characteristics of terpene distribution, more studies are required on the terpene production of Korean forests in various regions.

keywords
Coniferous tree, South Korean forest, Terpene, Terpene composition

Reference

1.

Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., & Odabasi, M. (2014). Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Science of the Total Environment, 490, 239–253.

2.

Bao, H., Kondo, A., Kaga, A., Tada, M., Sakaguti, K., Inoue, Y., Shimoda, Y., Narumi, D., &Machimura, T. (2008). Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan. Environmental Research, 106, 156–169.

3.

Bao, H., Shrestha, K. L., Kondo, A., Kaga, A., & Inoue, Y. (2010). Modeling the influence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan. Atmospheric Environment, 44, 421–431.

4.

Benjamin, M. T., & Winer, A. M. (1998). Estimating the ozone-forming potential of urban trees and shrubs. Atmospheric Environment, 32, 53–68.

5.

Byeon, G., Jeong, S., Kim, S., Yu, B., Park, S., Lee, J., Kim, D., Park, H. (2011) Study on phytoncide occurrence characteristics in Ulsan area following season. Proceedings of the Korean Environmental Sciences Society Conference, 20, 231–232.

6.

Cho, K. S., Lim, Y-R., Lee, K., Lee, J., Lee, J. H., Lee, I-S. (2017) Terpenes from forests and human health. Toxicological Research. In press

7.

Dominguez-Taylor, P., Ruiz-Suarez, L., Rosas-Perez, I., Hernandez-Solis, J., &Steinbrecher, R. (2007). Monoterpene and isoprene emissions from typical tree species in forests around Mexico City. Atmospheric Environment, 41, 2780–2790.

8.

Dubey, V. S., Bhalla, R., & Luthra, R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences, 28, 637.

9.

Geron, C., Rasmussen, R., Arnts, R. R., & Guenther, A. (2000). A review and synthesis of monoterpene speciation from forests in the United States. Atmospheric Environment, 34, 1761–1781.

10.

Geron, C., Guenther, A., Greenberg, J., Loescher, H. W., Clark, D., & Baker, B. (2002). Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmospheric Environment, 36, 3793–3802.

11.

Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408–414.

12.

Guenther, A. (1993). Isoprene and monoterpene emission rate variability:model evaluations and sensitivity analyses. Journal of Geophysical Research, 98, 12609–12617.

13.

Guenther, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210.

14.

Guenther, A. B., Monson, R. K., & Fall, R. (1991). Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. Journal of Geophysical Research. Atmospheres, 96, 10799–10808.

15.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., & McKay, W. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research. Atmospheres, 100, 8873–8892.

16.

Guenther, A., Otter, L., Zimmerman, P., Greenberg, J., Scholes, R., & Scholes, M. (1996). Biogenic hydrocarbon emissions from southern African savannas. Journal of Geophysical Research. Atmospheres, 101, 25859–25865.

17.

Hakola, H., Laurila, T., Rinne, J., & Puhto, K. (2000). The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmospheric Environment, 34, 4971–4982.

18.

Hakola, H., Tarvainen, V., Laurila, T., Hiltunen, V., Hellén, H., & Keronen, P. (2003). Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmospheric Environment, 37, 1623–1634.

19.

Harley, P. C., Monson, R. K., & Lerdau, M. T. (1999). Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 118, 109–123.

20.

Harrison, D., Hunter, M., Lewis, A., Seakins, P., Nunes, T., & Pio, C. (2001). Isoprene and monoterpene emission from the coniferous species Abies Borisiiregis—implications for regional air chemistry in Greece. Atmospheric Environment, 35, 4687–4698.

21.

Holm, Y., & Hiltunen, R. (1997). Variation and inheritance of monoterpenes in Larix species. Flavour and Fragrance Journal, 12, 335–339.

22.

Jang, E., & Kim, D. (2015). Study on concentration distribution characteristics of terpenes in Galmaetkkil of Busan area in the region, season, and time. The Annual Report of Busan Metropolitan City Institute of Health &Environment, 25, 375–376.

23.

Janson, R. W. (1993). Monoterpene emissions from Scots pine and Norwegian spruce. Journal of Geophysical Research: Stmospheres, 98, 2839–2850.

24.

Ji, D., Kim, S., & Han, J. (2002). A study on the comparison to source profile of the major terpenes from pine tree and Korean pine tree. Journal of Korean Society for Atmospheric Environment, 18, 515–525.

25.

Jo, G. G., & Kim, J. H. (2010). Changes in terpenes of three kinds of pine needles during litter decomposition. Journal of Ecology and Environment, 33, 175–186.

26.

Kang, D., & Kim, K. (2012). Effects of temperature and wind velocity on phytoncide concentration in Korean pine (Pinus Koraiensis) forest. Journal of Korean Society for Plants, People and Environment, 15, 15–20.

27.

Kawakami, K., Kawamoto, M., Nomura, M., Otani, H., Nabika, T., & Gonda, T. (2004). Effects of phytoncides on blood pressure under restraint stress in SHRSP. Clinical and Experimental Pharmacology and Physiology, 31, S27–S28.

28.

Kesselmeier, J., Kuhn, U., Wolf, A., Andreae, M., Ciccioli, P., Brancaleoni, E., Frattoni, M., Guenther, A., Greenberg, J., & Vasconcellos, P. D. C. (2000). Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmospheric Environment, 34, 4063–4072.

29.

Kim, J.-C. (2001). Factors controlling natural VOC emissions in a southeastern US pine forest. Atmospheric Environment, 35, 3279–3292.

30.

Kim, D-H. (2016). Chapter 35. Republic of South Korea. In IA Claude Vidal, L Hernández, JJ Redmond (Eds.), National Forest Inventories: Assessment of Wood Availability and Use (pp. 655-665) Springer International Publishing Switzerland.

31.

Kim, H.-C., & Lee, K.-H. (2010). A study on emission rates of VOCs from conifers at Jeju Island. Journal of Environmental Science International, 19, 627–637.

32.

Kim, B. Y., & Lee, C.-T. (2015). Production of phytoncide from Korean pine cone waste by steam distillation. Applied Chemistry for Engineering, 26, 648–658.

33.

Kim, J.-C., J-h, H., Gang, C.-H., Sunwoo, Y., Kim, K.-J., & Lim, J.-H. (2004). Comparison of monoterpene emission rates from conifers. Journal of Korean Society for Atmospheric Environment, 20, 175–183.

34.

Kim, J.-C., Kim, K.-J., Kim, D.-S., & Han, J.-S. (2005). Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere, 59, 1685–1696.

35.

Kim, K-J., Kim, J-C., Lim, J-H., SunWoo, Y., Park, H-J., Cho, K-T. (2007a) Study on natural VOC emission rates and characteristics emitted from Larix Leptoleis (Sieb. et Zucc.) Gordon. Journal of Environmental Science International, 16, 151-158.

36.

Kim, K-J., Kim, J-C., Lim, Y-J., Son, Y-S., SunWoo, Y., Cho, K-T. (2007b) A Study on the isoprene emissioin rates from deciduous tree (Quercus Mongolica Fischer). Journal of Environmental Science International, 16, 269-275.

37.

Kim, H-C., Oh, S. S., Song, Y. C., Kim, Y. J. (2013a) Distribution characteristics of phytoncide in Jeolmul Natural Recreation Forest of Jeju. Journal of Naturopathy, 2, 89-98.

38.

Kim, H-C., Oh, S. S., Song, Y. C., Kim, Y. J. (2013b) Distribution characteristics of phytoncide in Seogwipo Natural Recreation Forest. Journal of Naturopathy, 2, 99-107.

39.

Kim, S-Y., Jiang, X., Lee, M., Turnipseed, A., Guenther, A., Kim, J-C., Lee, S-J., Kim, S. (2013c) Impact of biogenic volatile organic compounds on ozone production at the Taehwa Research Forest near Seoul, South Korea. Atmospheric environment 70: 447-453.

40.

Kim, G., Kwon, C., Yeom, D., Joung, D., Choi, Y. H., & Park, B.-J. (2014). Relationship between NVOCs concentration and Korean red pine (Pinus densiflora S. et Z.)forest environment in spring season. Journal of Korean Forest Society, 103, 483–489.

41.

Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology, 60, 335–355.

42.

Klinger, L., Greenburg, J., Guenther, A., Tyndall, G., Zimmerman, P., M’bangui, M., Moutsamboté, J. M., & Kenfack, D. (1998). Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa. Journal of Geophysical Research. Atmospheres, 103, 1443–1454.

43.

Klinger, L., Li, Q. J., Guenther, A., Greenberg, J., Baker, B., Bai, J. H. (2002). Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research: Atmospheres, 107. ACH 16-1–ACH 16-21.

44.

Kong, W. (1999). The vertical distribution of air temperature and thermal amplitude of alpine plants on Mt. Halla, Cheju Island. Korea Journal Korean Geographical Society, 34, 385–393.

45.

Korea Forest Service. (2016). Basic statistics of forest. Statistical Yearbook of Forest, 2016, 14.

46.

Korean Statistical Information. (2015) http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parentId=F#SubCont. Accessed 20 Feb 2017.

47.

Kurose, K., Okamura, D., & Yatagai, M. (2007). Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species. Flavour and Fragrance Journal, 22, 10–20.

48.

Kwak, J., Lee, K., Han, B., Song, J., & Jang, J. (2013). A study on the vegetation structure of evergreen broad‐leaved forest Dongbaekdongsan (Mt.) in Jejudo, Korea. Korean Journal of Environment and Ecology, 27, 241–252.

49.

Lange, B. M., & Ahkami, A. (2013). Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—current status and future opportunities. Plant Biotechnology Journal, 11, 169–196.

50.

Latta, R. G., Linhart, Y. B., Snyder, M. A., & Lundquist, L. (2003). Patterns of variation and correlation in the monoterpene composition of xylem oleoresin within populations of ponderosa pine. Biochemical Systematics and Ecology, 31, 451–465.

51.

Lee, C. (1982). Illustrated flora of Korea, Hyangmunsa

52.

Lee, D. (2002). Ecology of Korea. In The 8th Intecol International Congress of Ecology (pp. 19–46).

53.

Lee, G. H., Kim, H. C., Lee, H. Y., & Heo, C.-G. (2007). Concentrations of monoterpenes in the atmosphere of forests at Jeju area. Korean Society for Atmospheric Environment, 5, 1681–1684.

54.

Lee, J. S., Bae, I. S., Kim, H. S., Lee, W. Y., NO YK, Yoon, J. S., Jung, K., Eom, S. W., Chae, Y. Z. (2011) Properties of phytoncide concentration at the green spaces in the Seoul Metropolis. Report of S.I.H.E, 47, 130-139.

55.

Lee, D-H., Kim, M-H., Seo, H-J., Min, G-W., Kim, S-H., Seo, K-Y., Jeong, W-S., Kang, Y-J., An, K-W., Paik, G-J. (2012a) Correlation analysis between terpene and meteorological factors at artificial coniferous forest of Mt. Moodeung. Journal of Environmental Science International, 21, 1221-1234.

56.

Lee, S-W., Park, D. G., Kim, K-Y. (2012b) Characteristics of phytoncide production at the recreation forest in the Chungbuk area. Journal of Environmental Impact Assessment, 21, 279-287.

57.

Lee, D.-H., Kim, M.-H., Park, O.-H., Park, K.-S., An, S.-S., Seo, H.-J., Jin, S.-H., Jeong, W.-S., Kang, Y.-J., & An, K.-W. (2013). A Study on the distribution characteristics of terpene at the main trails of Mt. Mudeung. Korean Journal of Environmental Health Sciences, 39, 211–222.

58.

Lee, D-H., Park, K-A., Lee, S-H., Song, H-M., Lee, K-W., Jeong, H-Y., Seo, G-Y., Cho, Y-G., Kim, E-S. (2015a) Distribution characteristics on volatile organic compounds at the forest of Mt. Mudeung and downtown. Analytical Science and Technology, 28, 246-254.

59.

Lee, K-H., Kim, H-C., Hu, C-G. (2015b) A Study on the Estimation of BVOCs Emission in Jeju Island (2): Emission Characteristic and Situation. Journal of Environmental Science International, 24, 207-219.

60.

Lerdau, M., Matson, P., Fall, R., & Monson, R. (1995). Ecological controls over monoterpene emissions from Douglas‐fir (Pseudotsuga menziesii). Ecology, 76, 2640–2647.

61.

Li, Q. (2010). Effect of forest bathing trips on human immune function. Environmental Health and Preventive Medicine, 15, 9–17.

62.

Li, Q., Kobayashi, M., Wakayama, Y., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Shimizu, T., Kawada, T., & Park, B. (2009). Effect of phytoncide from trees on human natural killer cell function. International Journal of Immunopathology and Pharmacology, 22, 951–959.

63.

Lim, J.-H., Kim, J.-C., Kim, K.-J., Son, Y.-S., Sunwoo, Y., & Han, J.-S. (2008). Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere, 73, 470–478.

64.

Martin, D. M., Gershenzon, J., & Bohlmann, J. (2003). Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiology, 132, 1586–1599.

65.

Mewalal, R., Rai, D. K., Kainer, D., Chen, F., Külheim, C., Peter, G. F., & Tuskan, G. A. (2017). Plant-derived terpenes: A feedstock for specialty biofuels. Trends in Biotechnology, 35, 227–240.

66.

Monson, R. K., Lerdau, M. T., Sharkey, T. D., Schimel, D. S., & Fall, R. (1995). Biological aspects of constructing volatile organic compound emission inventories. Atmospheric Environment, 29, 2989–3002.

67.

Oh, K. K. (1994). Plant community structure of evergreen broadleaved forest in Mt. Turyunsan. Korea. Journal of Korean Applied Ecology, 8, 43–57.

68.

Oh, G.-Y., Seo, Y.-G., Park, G.-H., Kim, I.-S., Bae, J.-S., Park, H.-Y., Yang, S.-I., Jeon, J.-M., Jeong, M.-H., & Seo, Y.-S. (2012). The characteristics of monoterpene and air quality in ambient air at forested road in Jeollanam-do. Journal of Korean Forest Society, 101, 195–202.

69.

Ormeño, E., Fernandez, C., & Mévy, J.-P. (2007). Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry, 68, 840–852.

70.

Ormeño, E., Gentner, D. R., Fares, S., Karlik, J., Park, J. H., & Goldstein, A. H. (2010). Sesquiterpenoid emissions from agricultural crops: correlations to monoterpenoid emissions and leaf terpene content. Environmental Science &Technology, 44, 3758–3764.

71.

Padhy, P., & Varshney, C. (2005). Emission of volatile organic compounds (VOC)from tropical plant species in India. Chemosphere, 59, 1643–1653.

72.

Park, D., Shin, P., Kim, C., Kweon, O., & Suk, T. (2010). Distribution characteristics of phytoncide (monoterpene) in the recreation forest in Chungchenbukdo. The Annual Report of Chungchenbuk-do Institute of Health & Environment, 19, 87–115.

73.

Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15, 133–144.

74.

Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles:nature’s diversity and ingenuity. Science, 311, 808–811.

75.

Pier, P. A. (1995). Isoprene emission rates from northern red oak using a whole-tree chamber. Atmospheric Environment, 29, 1347–1353.

76.

Pokorska, O., Dewulf, J., Amelynck, C., Schoon, N., Joó, É., Šimpraga, M., Bloemen, J., Steppe, K., & Van Langenhove, H. (2012). Emissions of biogenic volatile organic compounds from Fraxinus excelsior and Quercus robur under ambient conditions in Flanders (Belgium). International Journal of Environmental Analytical Chemistry, 92, 1729–1741.

77.

Sabillón, D., & Cremades, L. V. (2001). Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements—relationship with temperature and PAR. Atmospheric Environment, 35, 4419–4431.

78.

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., & Knorr, W. (2014). Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14, 9317–9341.

79.

Son, Y.-S., Hwang, Y.-S., Sung, J.-H., & Kim, J.-C. (2012). Variations of BVOCs emission characteristics according to increasing PAR. Journal of Korean Society for Atmospheric Environment, 28, 77–85.

80.

Son, Y.-S., Kim, K.-J., Jung, I.-H., Lee, S.-J., & Kim, J.-C. (2015). Seasonal variations and emission fluxes of monoterpene emitted from coniferous trees in East Asia: focused on Pinus rigida and Pinus koraiensis. Journal of Atmospheric Chemistry, 72, 27–41.

81.

Staudt, M., & Seufert, G. (1995). Light-dependent emission of monoterpenes by holm oak (Quercus ilex L.). Naturwissenschaften, 82, 89–92.

82.

The Plant List Version 1.1. http://www.theplantlist.org/tpl1.1/search?q=pinus. Accessed 20 Feb 2017.

83.

Tollsten, L., & Müller, P. M. (1996). Volatile organic compounds emitted from beech leaves. Phytochemistry, 43, 759–762.

84.

Warneck, P. (1988). Chemistry of the natural atmosphere. In International geophysics series, Elsvier (Vol. 41, pp. 223–237).

85.

Xiaoshan, Z., Yujing, M., Wenzhi, S., & Yahui, Z. (2000). Seasonal variations of isoprene emissions from deciduous trees. Atmospheric Environment, 34, 3027–3032.

86.

Xiaoyu, S., Jing, W., Xin, Y., & Weiqiang, C. (2006). Analysis of volatile oil constituents in pinecone of Pinus koraiensis by gas chromatography-mass spectrometry. Chinese Journal of Analytical Chemistry, 34, S217–S219.

87.

Yeon, P. S., Lee, H. E., & Shin, C. S. (2015). Assay of terpene compounds contained in the tree for forest healing. Journal of Korean Society for People Plants and Environment Vol, 18, 333–339.

88.

Yokouchi, Y., & Ambe, Y. (1984). Factors affecting the emission of monoterpenes from red pine (Pinus densiflora). Plant Physiology, 75, 1009–1012.

89.

Yu, E. J., Kim, T. H., Kim, K. H., & Lee, H. J. (2004). Aroma‐active compounds of Pinus densiflora (red pine) needles. Flavour and Fragrance Journal, 19, 532–537.

90.

Yun, C.-W., Kim, H.-J., Lee, B.-C., Shin, J.-H., Yang, H. M., & Lim, J. H. (2011). Characteristic community type classification of forest vegetation in South Korea. Journal of Korean Forest Society, 100, 504–521.

91.

Zimmerman, P. R. (1979) Testing of hydrocarbon emissions from vegetation, leaf litter and aquatic surfaces, and development of a methodology for compiling biogenic emission inventories. USA: US Environmental Protection Agency EPA-450/4-79-004.

92.

Zulak, K. G., & Bohlmann, J. (2010). Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology, 52, 86–97.

Journal of Ecology and Environment